PG COURSE DETAILS FOR M.Sc. (DAIRY CHEMISTRY)

Aim of the Department:

The mandate of this Department is to impart knowledge of chemistry related to milk and milk products through undergraduate and post graduate courses. The department aims at providing support towards the chemical quality related issues of the dairy industry as well. Another objective of the Department is to develop elite human resource for various managerial positions in quality control department of Dairy Industry in India and abroad. Broadly the research areas of the division includes development of rapid tests for detection of adulteration in milk and milk products, evaluating the role of functional ingredients used for value addition of dairy products, aspects related to micronutrient fortification in dairy products, assessing the physico-chemical properties of milk of different species, evaluating the role of different biofunctional molecules in biopreservation and shelf life enhancement of milk and milk products.

Total Intake: 10 students

<table>
<thead>
<tr>
<th>Courses</th>
<th>Course Code</th>
<th>Name of Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Courses (25 credits)</td>
<td>DC-701</td>
<td>Chemistry of Milk lipids</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DC-702</td>
<td>Chemistry of milk carbohydrates, vitamins, and minerals</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DC-704</td>
<td>Chemistry of milk protein</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DC-705</td>
<td>Chemistry of milk and milk product processing</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DC-706</td>
<td>Chemistry of functional Dairy foods and nutraceuticals</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DC-707</td>
<td>Chemical Quality Assurance in Dairy Industry</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DC-708</td>
<td>Analytical Techniques in Dairy Chemistry</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DC-709</td>
<td>Advances in Food Chemistry</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DC-880</td>
<td>Seminar I</td>
<td>1</td>
</tr>
<tr>
<td>Minor courses (15 credits)</td>
<td>DM-704</td>
<td>Dairy Microbiology</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>MAS-815</td>
<td>Experimental Design</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DT-820</td>
<td>Processing of milk and milk products</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DM-708</td>
<td>Microbiological quality assurance</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DC-710</td>
<td>Food and Nutritional Biochemistry</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td>Supporting Courses(05 credit)</td>
<td>MAS – 511</td>
<td>Statistical Methods</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>CSIT-701</td>
<td>Computer Orientation</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td>Thesis</td>
<td></td>
<td>Research work</td>
<td>30</td>
</tr>
<tr>
<td>Total credits</td>
<td></td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>Deficiency courses</td>
<td>DC-301</td>
<td>Physical Chemistry of Milk</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DT-303</td>
<td>Traditional Indian Dairy Products</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DT-402</td>
<td>Fat Rich Dairy Products</td>
<td>4(3-0-1)</td>
</tr>
<tr>
<td></td>
<td>DT-401</td>
<td>Condensed Milk and Dried Milk</td>
<td>5(3-0-2)</td>
</tr>
<tr>
<td></td>
<td>DT-501</td>
<td>Cheese Technology</td>
<td>5(3-0-2)</td>
</tr>
</tbody>
</table>
SEMESTER WISE ALLOTMENT OF COURSES

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Name of Course</th>
<th>Credits (L-T-P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEMESTER I (18 Credits)</td>
<td>DC-701</td>
<td>Chemistry of Milk lipids</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DC-702</td>
<td>Chemistry of milk carbohydrates, vitamins, and minerals</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DC-707</td>
<td>Chemical Quality Assurance in Dairy Industry</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DM-704</td>
<td>Dairy Microbiology</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DC-710</td>
<td>Food and Nutritional Biochemistry</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>MAS – 511</td>
<td>Statistical Methods</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td>SEMESTER II (15 Credits)</td>
<td>DC-704</td>
<td>Chemistry of milk protein</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DC-705</td>
<td>Chemistry of milk and milk product processing</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DC-706</td>
<td>Chemistry of functional Dairy foods and nutraceuticals</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>MAS -815</td>
<td>Experimental Design</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>CSIT-701</td>
<td>Computer Orientation</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td>SEMESTER III (13 Credits)</td>
<td>DC-708</td>
<td>Analytical Techniques in Dairy Chemistry</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DC-709</td>
<td>Advances in Food Chemistry</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DT-820</td>
<td>Processing of milk and milk products</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DM-708</td>
<td>Microbiological quality assurance</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DC-880</td>
<td>Seminar I</td>
<td>1</td>
</tr>
<tr>
<td>SEMESTER IV (30 Credits)</td>
<td>DC-999</td>
<td>Master’s Dissertation</td>
<td></td>
</tr>
<tr>
<td>Deficiency courses</td>
<td>DC-301</td>
<td>Physical Chemistry of Milk</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DT-303</td>
<td>Traditional Indian Dairy Products</td>
<td>3(2-0-1)</td>
</tr>
<tr>
<td></td>
<td>DT-402</td>
<td>Fat Rich Dairy Products</td>
<td>4(3-0-1)</td>
</tr>
<tr>
<td></td>
<td>DT-401</td>
<td>Condensed Milk and Dried Milk</td>
<td>5(3-0-2)</td>
</tr>
<tr>
<td></td>
<td>DT-501</td>
<td>Cheese Technology</td>
<td>5(3-0-2)</td>
</tr>
</tbody>
</table>

Eligibility criteria for admission to M.Sc. (Dairy Chemistry):

B.Tech(Dairy Technology) / B.Sc(Food Technology) / B.Sc(Food, Nutrition and Dietetics) / B.Sc.(Home Science)/ B.Tech(Food Technology) / B.Sc(Chemistry/Life Sciences with chemistry as one of the subject) / B.Tech(Chemical Engineering) / B.Sc.(Agriculture)/B.Sc.(Industrial Chemistry)/ B.Tech(Biotechnology)/B.Sc.(Biotechnology)/B.Sc(Biochemistry)
DC-701 Chemistry of Milk lipids 3(2-0-1)

Objectives:
To impart the basic knowledge on all aspects of milk lipids and to project the importance of milk lipids in the quality of milk products as well as in human health.

Theory

Milk lipids: classification, gross composition and physical properties; neutral and polar lipids and their role in milk and milk products.
Fatty acids profile: composition, properties and factors affecting them.
Unsaponifiable matter: composition with special reference to sterols and fat soluble vitamins and caretenoids, chemistry, physiological functions and levels of milk.
Chemical properties: hydrolysis by alkali water and enzymes; hydrogenation and halogenation; transesterification and interesterification; oxidation by chemical reagents.
Auto-oxidation: Definition, theories, induction period, secondary products of auto oxidation, factors affecting, prevention and measurement; antioxidants: Definition, types, reaction mechanism and estimation.

Practical:
Determination of melting point/slip point, peroxide value, TBA value, carbonyl value, unsaponifiable matter; estimation of total cholesterol by direct and indirect method; vitamin A, total phospholipids and free fatty acids in ghee; preparation of fatty acid esters and their analysis on GLC; estimation of antioxidants such as BHA.

Suggested Readings

DC-702 Chemistry of milk carbohydrates, vitamins, and minerals 3(2-0-1)

Objectives:
To impart basic knowledge about the importance of milk carbohydrates, minerals and water soluble vitamins and to study the importance of these milk constituents in human health.

Theory

Lactose: occurrence, isomers; molecular structure
Physical properties:- crystalline habits; hydrate; lactose glass; equilibrium of different isomers in solution; solubility; density sweetness
Chemical properties:- hydrolysis; pyrolysis; oxidation; reduction; degradation with strong bases; derivatives, dehydration and fragmentation browning reaction; oligosaccharides in milk
Minerals: major and minor minerals; factors associated with variation in salt composition
Physical equilibrium amongst milk salts; partitioning of salt constituents and factors affecting it; effect of various treatments on salt equilibrium, Salt balance and its importance in the processing of milk; protein mineral interactions; distribution and importance of trace elements in milk;
Water soluble vitamins: thiamin; riboflavin; niacin; pantothenic acid; pyridoxine; biotin; folacin (folic acid) and cyanocobalamin;
Molecular structure; levels in milk and milk products; biological significance; factors affecting their levels; ascorbic acid structure; relation to Redox potential (Eh) of milk and milk products.

Practical
Estimation of lactose in milk by volumetric; gravimetric; polarimetric and colorimetric methods; estimation of sodium and potassium by (flame photometry); calcium and magnesium by EDTA method; phosphorus by colorimetric method (Fiske and Subba Rao); citric acid and iron by colorimetric methods; vitamin C in milk by volumetric method and; estimation of brown colouring matter/burnt particles in milk powder.

Suggested Readings

DC-704 Chemistry of Milk Proteins 3(2-0-1)

Objectives:
To impart knowledge on different aspects of milk proteins

Theory
Major milk proteins: caseins (acids and micellar), methods of isolation; fractionation of casein and heterogeneity, physico-chemical properties, glycosylation, phosphorylation, amino acid composition, primary and secondary structure of different fractions; casein micelle models
Distribution and fractionation of different nitrogen fractions of milk proteins, nomenclature of milk proteins
Alpha-Lactalbumin and beta-lactoglobulin, Bovine Serum Albumin- distribution and methods of isolation and their physico-chemical properties
Denaturation of milk proteins, various factors affecting denaturation; casein-whey protein interactions
Minor milk proteins: proteose-peptone, immunoglobulins, lactoferrin, lipoprotein and fat globule membrane proteins
Indigenous milk enzymes: properties and their significance with particular reference to lipases, proteases, phosphatases, catalase, peroxidase, xanthine oxidase, lysozyme, lactoperoxidase and galactosyltransferase

Practical

Suggested Readings

DC-705 Chemistry of milk and milk product processing 3(2-0-1)

Objectives
To project the physico-chemical changes and effects of various milk constituents of the milk products during manufacture and storage.

Theory
Heat induced changes in milk leading to coagulation; Heat stability of concentrated milk as affected by different process variables; milk constituents and additives; Age gelation
Physico-chemical changes taking place during manufacturing and storage of concentrated milk; physico-chemical properties of dried milk as affected by different process treatments; storage stability of milk powder; physical properties of instant milk powder
Role of biological active components in human milk, Standards and Compositional properties of infant milk and infant food formulations.
Mechanism of action of stabilizers and emulsifiers in ice cream
Milk clotting enzymes from different sources; Changes taking place during manufacturing and ripening of cheese; chemical defects in cheese. Lactic acid fermentation in cheese and other fermented dairy products.
Size distribution of fat globules and factors affecting it; creaming phenomena; mechanism of churning; grading and standards of butter and physico-chemical characteristics.

Physico chemical constants of ghee, ghee flavour, texture (grains) in ghee,

Practicals
Determination of lactose and sucrose in condensed milk and ice-cream; determination of heat stability of milk and its concentrate; determination of moisture in skim milk powder/infant food by vacuum oven; determination of fat in cream by Gerber and Rose-Gottlieb methods; determination of moisture, fat (Gerber method), curd and salt in butter; determination of diacetyl and acetyl methyl carbinol in butter/cultured products; determination of RM, Polenske value, iodine value, saponification value of ghee; determination of nitrite, nitrate, free amino acids and free fatty acids in cheese; determination of rennet clotting time of milk.

Suggested Readings
7. ISI Handbook of Food Analysis S.P. 18 (Part II) Dairy Products. 1981 ISI Specifications (concerned) (ISI)

DC-706 Chemistry of functional Dairy foods and nutraceuticals 3(3-0-0)

Objectives
To impart knowledge about various functional foods, functional dairy ingredients and their interaction with other food constituents

Theory
Bio-functional milk proteins and their therapeutic potential, recent advances in their bio-separation,
Generation of bioactive peptides from casein and whey proteins, their isolation and characterization, colostrums as source of nutraceuticals.
Technological and nutritional aspects of milk lipids, conjugated linoleic acids (CLA) in milk, their variation, physiological effects and their importance in dairy foods. Omega fatty acid and their health attributes, strategies to reduce the cholesterol in dairy products.
Milk oligosaccharides, structural and technological aspects, health promoting aspects of milk oligosaccharides.
Chemistry involved in high pressure processing of milk.

Suggested Reading:
1. IDF Special issue 9701, 1997
8. Intense Sweeteners. Handbook of food analysis, 2nd ed. (Ed. by Leo ML Nollet)

DC-707 Chemical Quality Assurance in Dairy Industry 3(2-0-1)

Objectives: To project the importance of chemical quality assurance and quality control in relation to dairy industry and impart basic knowledge on all aspects of chemical quality assurance.

Theory
Concept of quality assurance and quality control in relation to dairy industry; quality management systems - ISO 9000; total quality management (TQM); hazard analysis of critical control points (HACCP); good manufacturing practices (GMP); role of international organisations such as ISO; IDF; CAC; AOAC; WTO and national organisations like BIS; CCFS; Good laboratory practices (GLP), laboratory Accreditation
PFA and Agmark; significance of milk and milk products order (MMPO) and APEDA (Agricultural and Processed Foods Export Development Authority) in dairy industry; guidelines for setting up quality control laboratory; sampling of milk and milk products; dairy detergents and sanitizers; calibration of milk testing glassware; preparation of standard reagents;
Instrumentation in analysis of milk and milk products; detection of adulterants in milk and milk products; Quality of packaging material for dairy products, Chemical contaminants/residues: pesticides; antibiotics; heavy metals; radionuclides etc. in dairy products.

Practical:
Preparation of standard solutions and buffers; testing of available chlorine content in hypochlorites/bleaching powder; determination of purity of common salt for butter and cheese making; detection of common adulterants in milk and foreign fat/oil in ghee; checking the calibration of lactometers; hydrometers; butyrometers; milk pipette and thermometer; qualitative colour tests to distinguish between azo dyes and natural dyes in butter; detection of pesticide residues and antibiotics in milk.

Suggested Readings
IDF - Special Issue No. 9302. Quality Assurance (QA) and Good Lab. Practices (GLP) in Dairy Laboratories.
IDF - Special Issue No. 9701 1997 Monograph on Residues and Contaminants in milk and milk products
Objectives:
To impart the advanced knowledge on the use of analytical techniques in Dairy Chemistry

Theory

Electrophoresis: principle and types, isoelectric focussing.
Column Chromatography, TLC, GLC, HPLC, gel-permeation, ion-exchange, affinity chromatography
Spectrophotometry: UV, visible, IR and flame photometry; potentiometry: principle, various electrodes; buffers.
Immunobased analytical techniques such as ELISA & Lateral flow assay
Separation of bio-molecules using membranes; ultracentrifugation.

Practical
Paper chromatography, TLC separation of amino acids; gel-filtration of biomolecules; Preparation of methyl esters of fatty acids of milk fat for GLC; preparation of a buffer and measurement of its pH electro-metrically and using indicators; SDS gel electrophoresis and molecular weight determination;
Separation and detection of different caseins using urea-PAGE; Plot UV-visible absorption spectra of a standard analyte; Demonstration of Beer's law using standard protein; Determination of sodium and potassium by flame photometry; Separation of milk proteins using ion-exchange chromatography and affinity chromatography. Detection of analytes using ELISA and lateral flow assay. Demonstration of working of HPLC, AAS and GLC.

Suggested Readings
Cooper, T.G. 1977. The Tools of Biochemistry, John Wiley & Sons, U.S.A.
Wilson, Wilson,K and Walker,J--- Practical Biochemistry, principals and techniques,Cambridge Univ. Press.K

Objectives:
To impart the advanced knowledge in Food Chemistry

Theory

Technology of fat and oil processing; a) Refining, b) Hydrogenations c) Inter esterification

Individual constituents, like proteins, lipids carbohydrates and vitamins in cereals flour and their relationship in dough making. Types of flours, bread making and non-bread making chemical composition influence of additives/minor ingredients on baking properties. physico-chemical changes taking place during malting.

Food Enzymes: - Classification, utilization in food industry, effect of inhibitors, pH and temperature. Minerals in food: - Main elements, trace elements in food products.

Aroma compounds in foods: - Threshold value, off flavours.

Food colour. Anti-nutritional factors and food contaminant: Toxic-trace elements, radio nuclides. Preservation of foods: General principles of food preservation, chemical preservation, preservation through irradiation.

Changes taking place during fermentation; drying and roasting of chocolate and cocoa; chemistry of tea manufacture; composition of coffee beans; physicochemical changes during roasting of coffee bean

Practical

Determination of water activity in foods, Determination of level of artificial sweeteners, Determination of crude fiber in food products; Determination of Antioxidant in fruits, vegetables; Determination of polyphenols in lemon juice; Determination of fat in grains; Determination of proteins in flour; Determination of tannins in coffee/tea, caffeine content in coffee, Determination of Vitamin C; Determination of Iron, calcium in foods; Determination of Ash content in flour; Determination of total soluble solids in fruit juice; determination of reducing and non reducing sugars in food

Suggested Readings

Belitz, H.D. and Grosch, W. 1987. Food Chemistry

DC-710 Food and Nutritional Biochemistry 3(2-0-1)

Objectives: To impart knowledge regarding the biochemical aspects of various nutrients and their interactions in foods during processing, storage and deterioration

Theory

Carbohydrates with special references to nutritional importance of lactose and dietary fibers, Fats-types of fatty acids and their significance in obesity and cardiovascular diseases, role of calcium in hypertension, cancer and osteoporosis, Biological availability of calcium. Effect of cooking, processing and preservation of different food products on nutrients, Biochemical aspect of post harvest storage specifically food spoilage.

Practical

Suggested Readings

Swaminathan, M.S. Essentials of Foods and Nutrition Vol-I and II